Conceptual Physical Physical Science Sixth Edition

Hewitt Suchocki Hewitt

PHYSICAL CONSTANTS

Name	Symbol	Value
Speed of light	С	$2.9979 \times 10^8 \mathrm{m/s}$
Planck's constant	b	$6.6260755 \times 10^{-34} \mathrm{J} \cdot \mathrm{s}$
		$4.1356692 \times 10^{15} \mathrm{eV} \cdot \mathrm{s}$
Gravitational constant	G	$6.67259 \times 10^{-11} \mathrm{N} \cdot \mathrm{m}^2/\mathrm{kg}^2$
Charge of electron	е	$1.602 \times 10^{-19} \mathrm{C}$
Mass of electron	m _e	$9.1093897 \times 10^{-31} \text{ kg}$
		0.51099906 MeV
Mass of proton	m_p	$1.6726231 \times 10^{-27} \text{ kg}$
		938.27231 MeV
Mass of neutron	m_n	$1.6749286 \times 10^{-27} \text{ kg}$
		939.56563 MeV
Avogadro's number	$N_{\!\mathcal{A}}$	6.0221367×10^{23} /mol
		$1 \text{ mole} = 6.022 \times 10^{23} \text{ particles}$
Unified atomic mass unit	u	$1.6605402 \times 10^{-27} \text{ kg}$
		931.49432 MeV

PHYSICAL PROPERTIES

Name	Value
Acceleration of gravity at Earth's surface, g	9.81 m/s ²
Mass of Sun	$1.99 \times 10^{30} \mathrm{kg}$
Radius of Sun	$6.96 \times 10^8 \mathrm{m}$
Mass of Earth	$5.98 \times 10^{24} \mathrm{kg}$
Radius of Earth (equatorial)	$6.37 \times 10^{6} \mathrm{m}$
Radius of Earth's orbit	$1.50 \times 10^{11} \mathrm{m} = 1 \mathrm{AU}$
Mass of Moon	$7.36 \times 10^{22} \mathrm{kg}$
Radius of Moon	$1.74 \times 10^6 \mathrm{m}$
Radius of Moon's orbit	$3.84 \times 10^8 \mathrm{m}$

CONVERSION FACTORS

Length, Area, Volume

1 inch = 2.54 cm (exact) 1 ft = 30.48 cm (exact) 1 m = 39.37 in. 1 mi = 1.6093440 km 1 liter = 10^3 cm³ = 10^{-3} m³

Time

1 year = $365\frac{1}{4}$ day = 3.1558×10^7 s 1 d = 86,400 s 1 h = 3600 s Mass

Mass

1 kg = 1000 g1 kg weighs about 2.205 lb

Pressure

 $1 Pa = 1 N/m^{2}$ 1 atm = 1.013 × 10⁵ Pa 1 lb/in.² = 6895 Pa

Energy and Power

1 cal = 4.187 J1 kWh = $3.60 \times 10^{6} \text{ J}$ 1 eV = $1.602 \times 10^{-19} \text{ J}$ 1 u = 931.5 MeV1 hp = 746 W

Speed

1 m/s = 3.60 km/h = 2.24 mi/h1 km/h = 0.621 mi/h

Force

1 lb = 4.448 N

NUMBERS EXPRESSED IN SCIENTIFIC NOTATION

$1\ 000\ 000 = 10 \times 10 \times 10 \times 10 \times 10 \times 10$	$= 10^{6}$
$100\ 000 = 10 \times 10 \times 10 \times 10 \times 10$	$= 10^{5}$
$10\ 000\ =\ 10\ \times\ 10\ \times\ 10\ \times\ 10$	$= 10^{4}$
$1000 = 10 \times 10 \times 10$	$= 10^{3}$
$100 = 10 \times 10$	$= 10^{2}$
10 = 10	$= 10^{1}$
1 = 1	$= 10^{0}$
0.1 = 1/10	$= 10^{-1}$
$0.01 = 1/100 = 1/10^2$	$= 10^{-2}$
$0.001 = 1/1000 = 1/10^3$	$= 10^{-3}$
$0.000 \ 1 \ = \ 1/10 \ 000 \ = \ 1/10^4$	$= 10^{-4}$
$0.0\ 000\ 1\ =\ 1/100\ 000\ =\ 1/10^5$	$= 10^{-5}$
$0.00\ 000\ 1\ =\ 1/1\ 000\ 000\ =\ 1/10^6$	$= 10^{-6}$

PHYSICAL DATA

Speed of light in a vacuum = $2.9979 \times 10^8 \text{ m/s}$
Speed of sound (20°C, 1 atm) = 343 m/s
Standard atmospheric pressure $= 1.01 \times 10^5 \text{ Pa}$
$1 \text{ light-year} = 9.461 \times 10^{12} \text{ km}$
1 astronomical unit (A.U.),
(average Earth–Sun distance) = 1.50×10^{11} m
Average Earth–Moon distance = 3.84×10^8 m
Equatorial radius of the Sun = 6.96×10^8 m
Equatorial radius of Jupiter = $7.14 \times 10^7 \text{ m}$
Equatorial radius of the Earth $= 6.37 \times 10^6 \mathrm{m}$
Equatorial radius of the Moon = 1.74×10^6 m
Average radius of hydrogen atom = $5 \times 10^{-11} \text{ m}$
Mass of the Sun = 1.99×10^{30} kg
Mass of Jupiter = 1.90×10^{27} kg
Mass of the Earth = 5.98×10^{24} kg
Mass of the Moon = 7.36×10^{22} kg
Proton mass = 1.6726×10^{-27} kg
Neutron mass = 1.6749×10^{-27} kg
Electron mass = 9.1×10^{-31} kg
Electron charge = 1.602×10^{-19} C

STANDARD ABBREVIATIONS

А	ampere	g	gram	Μ	molarity
amu	atomic mass unit	h	hour	min	minute
atm	atmosphere	hp	horsepower	mph	mile per hour
Btu	British thermal unit	Hz	Hertz	Ν	newton
С	coulomb	in.	inch	Pa	pascal
°C	degree Celsius	J	joule	psi	pound per square inch
cal	calorie	Κ	kelvin	S	second
eV	electron volt	kg	kilogram	V	volt
°F	degree Fahrenheit	lb	pound	W	watt
ft	foot	m	meter	Ω	ohm

Conceptual Physical Physical Sciences Sixth Edition

Paul G. Hewitt

City College of San Francisco

John Suchocki

Saint Michael's College

Leslie A. Hewitt

PEARSON

Editor in Chief: Jeanne Zalesky Senior Acquisitions Editor: Scott Dustan Project Manager: Martha Steele Program Manager: Mary Ripley Development Manager: Cathy Murphy Program/Project Management Team Lead: Kristen Flathman Production Management: Rose Kernan Compositor: Cenveo[®] Publisher Services Design Manager: Mark Ong Interior Designer: Richard Leeds, BigWig Design Cover Designer: Richard Leeds, BigWig Design Illustrators: Rolin Graphics Rights & Permissions Project Manager: Timothy Nicholls Rights & Permissions Management: Rachel Youdelman Photo Researcher: Amy Dunleavy Manufacturing Buyer: Maura Zaldivar-Garcia Executive Marketing Manager: Christy Lesko Marketing Manager: Elizabeth Ellsworth Cover Photo Credit: Dean Baird

Copyright © 2017, 2012, 2008, 2004 Pearson Education, Inc. All Rights Reserved. Printed in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions department, please visit www.pearsoned.com/permissions/.

Acknowledgements of third party content appear on page P-1, which constitutes an extension of this copyright page.

PEARSON, ALWAYS LEARNING and MasteringPhyics[®] are exclusive trademarks in the U.S. and/or other countries owned by Pearson Education, Inc. or its affiliates.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their respective owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson's products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc. or its affiliates, authors, licensees or distributors.

Library of Congress Cataloging-in-Publication Data

Hewitt, Paul G. | Suchocki, John. | Hewitt, Leslie A. Conceptual physical science / Paul G. Hewitt, John Suchocki, Leslie A. Hewitt. Sixth edition. | Boston: Pearson, 2015. | Includes bibliographical references and index. LCCN 2015038973 | ISBN 9780134060491 LCSH: Physical sciences—Textbooks. LCC Q158.5. H48 2015 | DDC 500.2—dc23 LC record available at http://lccn.loc.gov/201503897 <http://lccn.loc.gov/2015038973>

1 2 3 4 5 6 7 8 9 10—V311—21 20 19 18 17 16

www.pearsonhighered.com

ISBN 10: 0-13-406049-0 ISBN 13: 978-0-13-406049-1 To inspirational teachers Bruce Novak and Dean Baird

Brief Contents

1

PROLOGUE:

The Nature of Science

PART ONE Physics 13

1	Patterns of Motion and Equilibrium	14
2	Newton's Laws of Motion	38
3	Momentum and Energy	61
4	Gravity, Projectiles, and Satellites	92
5	Fluid Mechanics	122
6	Thermal Energy and Thermodynamics	149
7	Heat Transfer and Change of Phase	168
8	Static and Current Electricity	191
9	Magnetism and Electromagnetic Induction	221
10	Waves and Sound	243
11	Light	270

Earth Science 531

20	Rocks and Minerals	532
21	Plate Tectonics and Earth's Interior	567
22	Shaping Earth's Surface	601
23	Geologic Time—Reading the Rock Record	633
24	The Oceans, Atmosphere, and Climatic Effects	659
25	Driving Forces of Weather	695

PART FOUR

Astronomy 725

26	The Solar System	726
27	Stars and Galaxies	758
28	The Structure of Space and Time	790

APPENDICES

Linear and Rotational Motion	A-1
APPENDIX B: Vectors	A-8
APPENDIX C: Exponential Growth and Doubling Time	A-12
Odd-Numbered Solutions	S-1
Glossary	G-1
Photo Credits	C-1
Index	I-1

Chemistry 301

12	Atoms and the Periodic Table	302
13	The Atomic Nucleus and Radioactivity	327
14	Elements of Chemistry	355
15	How Atoms Bond and Molecules Attract	375
16	Mixtures	404
17	How Chemicals React	435
18	Two Classes of Chemical Reactions	462
19	Organic Compounds	498

Detailed Contents

PROLOGUE:

The Nature of Science	1
A Brief History of Advances in Science	2
Mathematics and Conceptual Physical Science	2
Scientific Methods	3
The Scientific Attitude	3
Science Has Limitations	6
Science, Art, and Religion	7
Technology—The Practical Use of Science	8
The Physical Sciences: Physics, Chemistry, Earth Science, and Astronomy	9
In Perspective	10

PART ONE Physics

13

1Patterns of Motion
and Equilibrium14

1.1	Aristotle on Motion	15
1.2	Galileo's Concept of Inertia	16
1.3	Mass—A Measure of Inertia	17
	One Kilogram Weighs 10 N	19
1.4	Net Force	19
1.5	The Equilibrium Rule	21
	Dynamic Equilibrium	22
1.6	Support Force	22
1.7	The Force of Friction	23
1.8	Speed and Velocity	24
	Speed	24
	Instantaneous Speed	25
	Average Speed	25
	Velocity	26
	Motion Is Relative	26
1.9	Acceleration	27

2 Newton's Laws of Motion

2.1	Newton's First Law of Motion	39
	The Moving Earth	40
2.2	Newton's Second Law of Motion	41
	When Acceleration Is g—Free Fall	42
	When Acceleration of Fall Is Less Than g— Non–Free Fall	44
2.3	Forces and Interactions	46
2.4	Newton's Third Law of Motion	47
	Simple Rule to Identify Action and Reaction	47
	Action and Reaction on Different Masses	48
	Defining Your System	50
2.5	Summary of Newton's Three Laws	52

38

61

3 Momentum and Energy

Momentum and Impulse 62 3.1 3.2 Impulse Changes Momentum 63 Case 1: Increasing Momentum 63 Case 2: Decreasing Momentum Over a Long Time 63 Case 3: Decreasing Momentum Over a Short Time 65 65 Bouncing 3.3 Conservation of Momentum 67 Collisions 68 **3.4** Energy and Work 70 Power 72 Potential Energy 72 Kinetic Energy 73 3.5 Work–Energy Theorem 74 Kinetic Energy and Momentum Compared 75 3.6 Conservation of Energy 76 3.7 Machines 77 Efficiency 79 3.8 3.9 Sources of Energy 80

4 Gravity, Projectiles, and Satellites 92

4.1	The Universal Law of Gravity	93
	The Universal Gravitational Constant, G	94
4.2	Gravity and Distance: The Inverse-Square Law	95
4.3	Weight and Weightlessness	97
4.4	Universal Gravitation	98
4.5	Projectile Motion	99
	Projectiles Launched Horizontally	100
	Projectiles Launched at an Angle	101
4.6	Fast-Moving Projectiles—Satellites	106
4.7	Circular Satellite Orbits	108
4.8	Elliptical Orbits	109
4.9	Escape Speed	111

122

5 Fluid Mechanics

5.1	Density	123
5.2	Pressure	124
	Pressure in a Liquid	124
5.3	Buoyancy in a Liquid	126
5.4	Archimedes' Principle	127
	Flotation	128
5.5	Pressure in a Gas	130
	Boyle's Law	131
5.6	Atmospheric Pressure	132
	Barometers	133
5.7	Pascal's Principle	135
5.8	Buoyancy in a Gas	137
5.9	Bernoulli's Principle	138
	Applications of Bernoulli's Principle	139

6 Thermal Energy and Thermodynamics 149

6.1	Temperature	150
6.2	Absolute Zero	151
6.3	Heat	152

6.4	Quantity of Heat	153
6.5	The Laws of Thermodynamics	153
6.6	Entropy	155
6.7	Specific Heat Capacity	155
	The High Specific Heat Capacity of Water	157
6.8	Thermal Expansion	158
6.9	Expansion of Water	160

7Heat Transfer and
Change of Phase168

7.1	Conduction	169
7.2	Convection	170
7.3	Radiation	172
	Emission of Radiant Energy	172
	Absorption of Radiant Energy	173
	Reflection of Radiant Energy	174
7.4	Newton's Law of Cooling	175
7.5	Climate Change and the Greenhouse Effect	176
7.6	Heat Transfer and Change of Phase	178
	Evaporation	178
	Condensation	179
7.7	Boiling	180
7.8	Melting and Freezing	182
7.9	Energy and Change of Phase	183

8 Static and Current Electricity 191

8.1	Electric Charge	192
	Conservation of Charge	193
8.2	Coulomb's Law	194
	Charge Polarization	196
8.3	Electric Field	196
8.4	Electric Potential	198
8.5	Voltage Sources	200
8.6	Electric Current	201
	Direct Current and Alternating Current	203
8.7	Electrical Resistance	203
	Superconductors	204

270

8.8	Ohm's Law	204
	Electric Shock	205
8.9	Electric Circuits	207
	Series Circuits	207
	Parallel Circuits	208
	Parallel Circuits and Overloading	209
	Safety Fuses	210
8.10	Electric Power	211

9 Magnetism and Electromagnetic Induction 221

9.1	Magnetic Poles	222
9.2	Magnetic Fields	223
9.3	Magnetic Domains	224
9.4	Electric Currents and Magnetic Fields	225
	Electromagnets	226
	Superconducting Electromagnets	227
9.5	Magnetic Forces on Moving Charges	227
	Magnetic Force on Current-Carrying Wires	228
	Electric Meters	228
	Electric Motors	229
9.6	Electromagnetic Induction	230
	Faraday's Law	231
9.7	Generators and Alternating Current	233
9.8	Power Production	233
9.9	The Transformer— Boosting or Lowering Voltage	234
9.10	Field Induction	235

10 Waves and Sound 243

10.1	Vibrations and Waves	244
10.2	Wave Motion	245
	Wave Speed	245
10.3	Transverse and Longitudinal Waves	246
10.4	Sound Waves	247
	Speed of Sound	248
10.5	Reflection and Refraction of Sound	249

10.6 Forced Vibrations and Resonance	251
10.7 Interference	253
Beats	255
Standing Waves	255
10.8 Doppler Effect	257
10.9 Bow Waves and the Sonic Boom	258
10.10 Musical Sounds	260

11 Light

11.1	Electromagnetic Spectrum	271
11.2	Transparent and Opaque Materials	272
11.3	Reflection	275
	Law of Reflection	276
	Diffuse Reflection	277
11.4	Refraction	278
11.5	Color	281
	Selective Reflection	282
	Selective Transmission	282
	Mixing Colored Lights	283
	Complementary Colors	284
	Mixing Colored Pigments	285
	Why the Sky Is Blue	286
	Why Sunsets Are Red	286
	Why Clouds Are White	287
11.6	Dispersion	288
	Rainbows	288
11.7	Polarization	290

PART TWO

С	hemistry	301
12	Atoms and the Periodic Table	302
12.1	Atoms Are Ancient and Empty	303
12.2	The Elements	304
12.3	Protons and Neutrons	305
	Isotopes and Atomic Mass	306

VIII DETAILED CONTENTS

12.4	The Periodic Table	308
	Periods and Groups	310
12.5	Physical and Conceptual Models	313
12.6	Identifying Atoms Using the Spectroscope	316
12.7	The Quantum Hypothesis	317
12.8	Electron Waves	319
12.9	The Shell Model	321

13 The Atomic Nucleus
and Radioactivity329

13.1	Radioactivity	330
	Alpha, Beta, and Gamma Rays	330
	Radiation Dosage	332
	Radioactive Tracers	334
13.2	The Strong Nuclear Force	334
13.3	Half-Life and Transmutation	336
	Natural Transmutation	337
	Artificial Transmutation	339
13.4	Radiometric Dating	340
13.5	Nuclear Fission	341
	Nuclear Fission Reactors	344
	The Breeder Reactor	345
	The Thorium Reactor	346
13.6	Mass–Energy Equivalence	347
13.7	Nuclear Fusion	349
	Controlling Fusion	350

14 Elements
of Chemistry357

14.1	Chemistry: The Central Science	358
14.2	The Submicroscopic World	359
14.3	Physical and Chemical Properties	361
14.4	Determining Physical and Chemical Changes	363
14.5	Elements to Compounds	365
14.6	Naming Compounds	367
14.7	The Advent of Nanotechnology	368

15 How Atoms Bond and Molecules Attract 377

15.1	Electron-Dot Structures	378
15.2	The Formation of Ions	379
	Molecules Can Form Ions	381
15.3	Ionic Bonds	382
15.4	Metallic Bonds	385
15.5	Covalent Bonds	386
15.6	Polar Covalent Bonds	389
15.7	Molecular Polarity	392
15.8	Molecular Attractions	395
	Ions and Dipoles	396
	Induced Dipoles	397

16 Mixtures406

16.1	Most Materials Are Mixtures	407
	Mixtures Can Be Separated by Physical Means	408
16.2	The Chemist's Classification of Matter	409
16.3	Solutions	411
16.4	Solubility	416
	Solubility Changes with Temperature	417
	Solubility of Gases	418
16.5	Soaps, Detergents, and Hard Water	419
	Softening Hard Water	421
16.6	Purifying the Water We Drink	423
	Desalination	425
	Bottled Water	427
16.7	Wastewater Treatment	428

17 How Chemicals React

17.1	Chemical Equations	438
17.2	Counting Atoms and Molecules by Mass	440
	Converting between Grams and Moles	442
17.3	Reaction Rates	445

437

17.4	Catalysts	449
17.5	Energy and Chemical Reactions	451
	Exothermic Reaction: Net Release of Energy	453
	Endothermic Reaction: Net Absorption of Energy	455
17.6	Chemical Reactions Are Driven by Entropy	456

18 Two Classes of Chemical Reactions 464

18.1	Acids Donate Protons; Bases Accept Them	465
	A Salt Is the Ionic Product of an Acid–Base Reaction	468
18.2	Relative Strengths of Acids and Bases	469
18.3	Acidic, Basic, and Neutral Solutions	472
	The pH Scale Is Used to Describe Acidity	475
18.4	Acidic Rain and Basic Oceans	476
18.5	Losing and Gaining Electrons	480
18.6	Harnessing the Energy of Flowing Electrons	482
	Batteries	483
	Fuel Cells	486
18.7	Electrolysis	488
18.8	Corrosion and Combustion	489

19 Organic Compounds 500

19.1	Hydrocarbons	501
19.2	Unsaturated Hydrocarbons	505
19.3	Functional Groups	508
19.4	Alcohols, Phenols, and Ethers	509
19.5	Amines and Alkaloids	513
19.6	Carbonyl Compounds	514
19.7	Polymers	519
	Addition Polymers	520
	Condensation Polymers	522

PART THREE

Earth Science 533

20 Rocks and Minerals 534

20.1	The Geosphere Is Made Up of Rocks and Minerals	535
20.2	Minerals	537
20.3	Mineral Properties	538
	Crystal Form	538
	Hardness	540
	Cleavage and Fracture	540
	Color	541
	Density	541
20.4	Classification of Rock-Forming Minerals	542
20.5	The Formation of Minerals	544
	Crystallization in Magma	544
	Crystallization in Water Solutions	546
20.6	Rock Types	547
20.7	Igneous Rocks	548
	Generation of Magma	548
	Three Types of Magma, Three Major Igneous Rocks	550
	Igneous Rocks at Earth's Surface	550
	Igneous Rocks Beneath Earth's Surface	553
20.8	Sedimentary Rocks	553
	The Formation of Sedimentary Rock	553
	Classifying Sedimentary Rocks	556
	Fossils: Clues to Life in the Past	557
20.9	Metamorphic Rocks	559
	Types of Metamorphism: Contact and Regional	560
	Classifying Metamorphic Rocks	561
20.10	The Rock Cycle	562

21 Plate Tectonics and Earth's Interior

21.1	Seismic Waves	570
21.2	Earth's Internal Layers	571
	The Core	572
	The Mantle	573
	The Crustal Surface	574

569

X DETAILED CONTENTS

21.3	Continental Drift—An Idea Before		
	Its Time	5/5	
21.4	Acceptance of Continental Drift	577	
21.5	The Theory of Plate Tectonics	580	
	Divergent Plate Boundaries	581	
	Convergent Plate Boundaries	583	
	Transform Plate Boundaries	586	
21.6	Continental Evidence for Plate Tectonics	588	
	Folds	588	
	Faults	589	
	Earthquakes	591	
21.7	The Theory That Explains the Geosphere	595	

603

22 Shaping Earth's Surface

The Hydrologic Cycle	604
Groundwater	605
The Water Table	607
Aquifers and Springs	607
Groundwater Movement	609
The Work of Groundwater	611
Land Subsidence	611
Carbonate Dissolution	612
Surface Water and Drainage Systems	613
Stream Flow Geometry	614
Drainage Basins and Networks	616
The Work of Surface Water	617
Erosion and Transport of Sediment	618
Erosional and Depositional Environments	619
Stream Valleys and Floodplains	619
Deltas: The End of the Line for a River	621
Glaciers and Glaciation	622
Glacier Formation and Movement	622
Glacial Mass Balance	624
The Work of Glaciers	625
Glacial Erosion and Erosional Landforms	625
Glacial Sedimentation and Depositional	
Landforms	627
	The Hydrologic Cycle Groundwater The Water Table Aquifers and Springs Groundwater Movement The Work of Groundwater Land Subsidence Carbonate Dissolution Surface Water and Drainage Systems Stream Flow Geometry Drainage Basins and Networks The Work of Surface Water Erosion and Transport of Sediment Erosional and Depositional Environments Stream Valleys and Floodplains Deltas: The End of the Line for a River Glaciers and Glaciation Glacier Formation and Movement Glacial Mass Balance The Work of Glaciers Glacial Erosion and Erosional Landforms Glacial Sedimentation and Depositional

23 Geologic Time—Reading the Rock Record 635

23.1	The Rock Record—Relative Dating	636						
	Gaps in the Rock Record	638						
23.2	Radiometric Dating	640						
23.3	Geologic Time	641						
23.4	Precambrian Time (4500 to 543 Million Years Ago) 6							
23.5	The Paleozoic Era (543 to 248 Million Years Ago)	645						
	The Cambrian Period (543 to 490 Million Years Ago)	645						
	The Ordovician Period (490 to 443 Million Years Ago)	646						
	The Silurian Period (443 to 417 Million Years Ago)	646						
	The Devonian Period (417 to 354 Million Years Ago)	647						
	The Carboniferous Period (354 to 290 Million Years Ago)	647						
	The Permian Period (290 to 248 Million Years Ago)	648						
23.6	The Mesozoic Era (248 to 65 Million Years Ago)	649						
	The Cretaceous Extinction	650						
23.7	The Cenozoic Era (65 Million Years Ago to the Present)	652						
	Cenozoic Life	653						
23.8	Earth History in a Capsule	654						

24 The Oceans, Atmosphere, and Climatic Effects 661

24.1	Earth's Atmosphere and Oceans			
	Evolution of the Earth's Atmosphere and Oceans	662		
24.2	Components of Earth's Oceans	664		
	The Ocean Floor	664		
	Seawater	666		
24.3	Ocean Waves, Tides, and Shorelines	667		
	Wave Refraction	668		
	The Work of Ocean Waves	670		
	Along The Coast	670		

24.4	Components of Earth's Atmosphere 67			
	Vertical Structure of the Atmosphere	675		
24.5	Solar Energy	676		
	The Seasons	677		
	Terrestrial Radiation	678		
	The Greenhouse Effect and Global Warming	678		
24.6	Driving Forces of Air Motion	680		
	The Temperature–Pressure Relationship	681		
	Large-Scale Air Movement	683		
24.7	Global Circulation Patterns	684		
	Upper Atmospheric Circulation	685		
	Oceanic Circulation	686		
	Surface Currents	687		
	Deep-Water Currents	690		

25 Driving Forces of Weather 697

25.1	Atmospheric Moisture	698
	Temperature Changes and Condensation	700
25.2	Weather Variables	702
	Adiabatic Processes in Air	702
	Atmospheric Stability	703
25.3	Cloud Development	705
	High Clouds	706
	Middle Clouds	706
	Low Clouds	707
	Clouds with Vertical Development	708
	Precipitation Formation	708
25.4	Air Masses, Fronts, and Storms	709
	Atmospheric Lifting Mechanisms	710
	Convectional Lifting	710
	Orographic Lifting	710
	Frontal Lifting	711
	Midlatitude Cyclones	713
25.5	Violent Weather	714
	Thunderstorms	715
	Tornadoes	715
	Hurricanes	716
25.6	The Weather—The Number One Topic of Conversation	719

PART FOUR725Astronomy72526 The Solar System72626.1 The Solar System and Its Formation727Nebular Theory729Nebulae730

26.2	The Sun	731
26.3	The Inner Planets	733
	Mercury	733
	Venus	734
	Earth	735
	Mars	736
26.4	The Outer Planets	737
	Jupiter	737
	Saturn	739
	Uranus	740
	Neptune	740
26.5	Earth's Moon	741
	The Phases of the Moon	742
	Why One Side Always Faces Us	744
	Eclipses	745
26.6	Failed Planet Formation	748
	The Asteroid Belt and Meteors	748
	The Kuiper Belt and Dwarf Planets	749
	The Oort Cloud and Comets	751

27 Stars and Galaxies 758

27.1	Observing the Night Sky 759				
27.2	The Brightness and Color of Stars 74				
	Radiation Curves of Stars	762			
27.3	The Hertzsprung–Russell Diagram	763			
27.4	The Life Cycles of Stars	765			
	Novae and Supernovae	769			
27.5	Black Holes	771			
	Black Hole Geometry	772			
27.6	Galaxies	775			
	Elliptical, Spiral, and Irregular Galaxies	777			
	Active Galaxies	778			
	Clusters and Superclusters	781			

28 The Structure of Space and Time

790

Looking Back in Time	791
The Big Bang	791
Cosmic Background Radiation	794
The Abundance of Hydrogen and Helium	796
Cosmic Inflation	797
General Relativity	799
Tests of General Relativity	802
Special Relativity	803
Different Views of Spacetime	805
Space Travel	806
Dark Matter	807
Galaxy Formation	809
	Looking Back in Time The Big Bang Cosmic Background Radiation The Abundance of Hydrogen and Helium Cosmic Inflation General Relativity Tests of General Relativity Special Relativity Different Views of Spacetime Space Travel Dark Matter Galaxy Formation

28.6 Dark Energy	809
28.7 The Fate of the Universe	811
APPENDIX A: Linear and Rotational Motion	A-1
APPENDIX B: Vectors	A-8
APPENDIX C: Exponential Growth and Doubling Time	A-12
Odd-Numbered Solutions	S-1
Glossary	G-1
Photo Credits	C-1
Index	I-1

The Conceptual Physical Science Photo Album

his is a very personal book with many photographs of family and friends. We dedicate this edition to physics teacher Dean Baird, our laboratory manual author, and to physics teacher Bruce Novak who assisted in making this the best edition ever. Dean, a Presidential Awardee for Excellence in Mathematics and Science Teaching, is also the photographer of this edition's cover. Many of Dean's photos appear throughout the book. Dean is shown on pages 273, 579, and 746. Physics teacher Bruce is also a talented photographer with several new photos in various chapters. (All photographs are listed in the Photo Credits pages at the end of the book). Bruce is shown on page 283, and with his wife Linda on page 742. Bruce's mom is shown on page 147. This 6th edition is a better book because of the inputs of Bruce and Dean.

Four part-opener photos of this book begin with little Charlotte Ackerman in Part 1 on page 13. Part 2 opens with John's nephews and niece Liam, Bo, and Neve Hopwood on page 293. Part 3 opens with Leslie's daughter Emily Abrams on page 533. Lastly, John's and Leslie's cousin, space-engineer Mike Lucas, opens Part 4 on page 725.

The authors' families begin with Paul's wife Lillian on pages 52, 169, 191, 249, 285, and 298. Lil's mom, Siu Bik Lee, makes use of solar power, and late dad, Wai Tsan Lee, shows magnetic induction on pages 183 and 225, with photos of niece Allison Lee Wong and nephew Erik Lee Wong on page 180. Paul's late wife, Millie Luna Hewitt, illustrates intriguing physics in her kitchen on page 171. Paul and Millie's eldest daughter, Jean Hurrell, is on page 149, and is also shown with her daughters Marie and Kara Mae on page 270 and Jean's husband Phil is on page 272. Marie appears again on page 23, and Kara Mae on page 46. Son Paul is on pages 154 and 703, and his former wife Ludmila shows crossed Polaroids on page 292. A photo of their daughter Grace opens the Prologue on page 1. Grace joins her brother Alexander and Leslie's daughters Megan and Emily Abrams for a series of group photos on page 285. Alexander airlifting on his skateboard is on page 105. Paul's first grandchild, Manuel Hewitt, swings as a youngster on page 267, and cooks as an executive chef on page 153.

Paul's sister (John's mom), Marjorie Hewitt Suchocki (pronounced Su-hock-ee), a retired theologian, shows reflectivity on page 276. Paul's brother Dave with his wife Barbara pump water on page 134. Paul's younger brother Steve shows Newton's third law with his daughter Gretchen on page 58. Gretchen's photo of the sky-blue Celeste River in her native Costa Rica is on page 286. Steve's eldest daughter Stephanie, a schoolteacher, demonstrates refraction on page 298.

Chemistry author John, who in his "other life" is John Andrew, singer and songwriter, plays his guitar on page 232. He is shown again walking barefoot on red-hot coals on the opening photo of Chapter 7. His wife Tracy, with son Ian, is shown in Figure 12.3 and with son Evan on page 364. Daughter Maitreya is eyeing ice cream on page 500 and brushing her teeth with her dear friend Annabelle Creech on page 383. John's nephew Graham Orr appears at ages 7 and 21 on page 407, demonstrating how water is essential for growth. The Suchocki dog, Sam, pants on page 178. The "just-married" John and Tracy are flanked by John's sisters Cathy Candler and Joan Lucas on page 261. (Tracy's wedding ring is prominently shown on page 357.) Sister Joan is riding her horse on page 25. Cousin George Webster looks through his scanning electron microscope on page 320. Dear friends from John's years teaching in Hawaii include Rinchen Trashi on page 316 as well as Kai Dodge and Maile Ventura on page 493. Vermont friend Nikki Jiraff is seen carbonating water on page 427.

On page 326, Earth-Science author Leslie at age 16 illustrates the wonderful idea that we're all made of stardust. As an adult, Leslie sits on an ancient sand dune with her daughter Megan on page 629. Leslie's husband, Bob Abrams (a hydrogeologist), is shown on page 627. Megan, illustrates cooling by expansion on page 171, magnetic induction on page 221, and does a mineral scratch test on page 542. Younger daughter Emily uses a deck of cards to show how ice crystals slip on page 623, and on page 713 demonstrates counterclockwise rotation. On page 619, Bob, Megan, and Emily stand beside steep canyon walls carved by years of stream erosion. Leslie's cousin, Mike Luna, in his spiffy Corvette is on page 118. Leslie's second cousin, Angela Hernandez, holds electric bulbs on page 212, and photos of her family are on pages 52, 86, 136, and 146. Thank you Angela! Third cousin, Isaac Jones, shows the nil effects of a fireworks sparkler on page 152, as his father Terrence illustrated in the part-opening photo on heat in earlier editions of *Conceptual Physics*. Another second cousin, Esther Alejandra Gonzales, illustrates Newton's third law on page 57. And dear to all three authors, our late friend Charlie Spiegel is shown on page 274.

Physics professor friends include the following: contributor Ken Ford, who shares his passion between physics and flying on page 255; Tsing Bardin illustrates liquid pressure on page 125; from the Exploratorium in San Francisco are Ron Hipschman freezing water on page 182 and Patty O'Plasma illustrating sound and color on pages 252 and 296; from City College of San Francisco instructors are Fred Cauthen on page 241; Jill Johnsen on page 61; and Shruti Kumar on page 119.

Paul's physics teaching friends listed from the front to the back of the book include the following: Evan Jones illustrates Bernoulli's Principle on page 139; Marshall Ellenstein, the producer of Paul's DVDs and webmaster of Paul's physics screencasts, walks barefoot on broken glass on page 147; David Housden demonstrates Paul's favorite circuit demo on page 209; Fred Myers shows magnetic force on page 224; the late Jean Curtis shows magnetic levitation on page 232; Karen Jo Matsler generates light on page 236; Diane Reindeau demonstrates waves on page 245; Tom Greenslade illustrates wave motion with a slinky on page 246; Bree Barnett Dreyfuss illustrates wave superposition on page 254; Lynda Williams sings her heart out on page 260; Peter Hopkinson displays an impressive mirror antic on page 297; and Chelcie Liu concludes with his novel race tracks in Appendix A.

Paul's dear personal friends include Burl Grey on page 21, who stimulated Paul's love of physics a half century ago, and Howie Brand from college days illustrating impulse and changes in momentum on page 65. Former student Cassy Cosme safely breaks bricks with her bare hand on page 65. Will Maynez shows the airtrack he built for City College of San Francisco (CCSF) on page 70, and burns a peanut on page 164. Bob Miner pushes a wall without doing work on it on page 71. Tenny Lim, former student and now a design engineer for Jet Propulsion Labs, puts energy into her bow on page 72. David Vasquez shows his passion for generating electricity via fuel cells on page 81. David's nephew Carlos Vasquez is colorfully shown on page 284. Duane Ackerman's daughter Charlotte is on page 13. Dan Johnson, from college days, crushes a can with atmospheric pressure on page 143. Doing the same on a larger scale on page 148 are P. O. Zetterberg with Tomas and Barbara Brage. P. O.'s wife, Anette Zetterberg, presents an intriguing thermal expansion question on page 166. Dennis McNelis illustrates thermal radiation on page 174 and, with daughter Melissa, scaling Earth and Moon on page 742. Another former student, Helen Yan, now an orbit analyst for Lockheed Martin Corporation and part-time CCSF physics instructor, poses with a black and white box on page 175. Hawaii friend Chiu Man Wu, the dad of Andrea who is on page 89, is on page 178. Close friend from teen years, the late Paul Ryan, sweeps his finger through molten lead on page 184. Tim Gardner illustrates induction on page 240. Science author Suzanne Lyons with children Tristan and Simone illustrate complementary colors on page 298. Tammy and Larry Tunison demonstrate radiation safety on page 333. Abby Dijamco produces touching music on page 243.

These photographs are of people very dear to the authors, which all the more makes *Conceptual Physical Science* our labor of love.

To the Student

Physical Science is about the rules of the physical world—physics, chemistry, geology, and astronomy. Just as you can't enjoy a ball game, computer game, or party game until you know its rules, so it is with nature. Nature's rules are beautifully elegant and can be neatly described mathematically. That's why many physical science texts are treated as applied mathematics. But too much emphasis on computation misses something essential—*comprehension*—a gut feeling for the concepts. This book is *conceptual*, focusing on concepts in down-to-earth English rather than in mathematical language. You'll see the mathematical structure in frequent equations, but you'll find them *guides to thinking* rather than recipes for computation.

We enjoy physical science, and you will too—because you'll understand it. Just as a person who knows the rules of botany best appreciates plants, and a person who knows the intricacies of music best appreciates music, you'll better appreciate the physical world about you when you learn its rules.

Enjoy your physical science!

FAUL G. HEWIT

Leslie a. Hewith

To the Instructor

his Sixth Edition of *Conceptual Physical Science* with its important ancillaries provides your students an enjoyable and readable introductory coverage of the physical sciences. As with the previous edition, 28 chapters are divided into four main parts—Physics, Chemistry, Earth Sciences, and Astronomy. We begin with physics, the basic science that provides a foundation for chemistry, which in turn extends to Earth science and astronomy.

For the nonscience student, this book affords a means of viewing nature more perceptively—seeing that a surprisingly few relationships make up its rules, most of which are the laws of physics unambiguously expressed in equation form. The use of equations for problem solving are minimized. Equations in this book are more effectively treated as *guides to thinking*. The symbols in equations are akin to musical notes that guide musicians.

For the science student, this same foundation affords a springboard to other sciences such as biology and health-related fields. For more quantitative students, end-of-chapter material provides ample problem-solving activity. Many of these problems are couched in symbols first—with secondary emphasis on numerical values. All problems nevertheless stress the connections in physics and in chemistry.

Physics begins with static equilibrium so that students can start with forces before studying velocity and acceleration. After success with simple forces, the coverage touches lightly on kinematics—enough preparation for Newton's laws of motion. The pace picks up with the conventional order of mechanics followed by heat, thermodynamics, electricity and magnetism, sound, and light. Physics chapters lead to the realm of the atom—a bridge to chemistry.

The chemistry chapters begin with a look at the submicroscopic world of the atom, which is described in terms of subatomic particles and the periodic table. Students are then introduced to the atomic nucleus and its relevance to radioactivity, nuclear power, as well as astronomy. Subsequent chemistry chapters follow a traditional approach that covers chemical changes, bonding, molecular interactions, and the formation of mixtures. With this foundation students are then set to learn the mechanics of chemical reactions and the behavior of organic compounds. As with previous editions, chemistry is related to the student's familiar world—the fluorine in their toothpaste, the Teflon on frying pans, and the flavors produced by various organic molecules. The environmental aspects of chemistry are also highlighted—from how our drinking water is purified to how atmospheric carbon dioxide influences the pH of rainwater and our oceans.

The Earth science chapters focus on the interconnections between the geosphere, hydrosphere, and atmosphere. Geosphere chapters begin in a traditional sequence—rocks and minerals, plate tectonics, earthquakes, volcanoes, and the processes of erosion and deposition and their influence on landforms. This foundation material is revisited in an examination of Earth over geologic time. A study of Earth's oceans leads to a focus on the interactions between the hydrosphere and atmosphere. Heat transfer and the differences in seawater density across the globe set the stage for discussions of atmospheric and oceanic circulation and Earth's overall climate. Concepts from physics are reexamined in the driving forces of weather. We conclude with an exploration of severe weather adding depth to the study of the atmosphere.

The applications of physics, chemistry, and the Earth sciences applied to other massive bodies in the universe culminate in Part Four—Astronomy. Of all the physical sciences, astronomy and cosmology are arguably undergoing the most rapid development. Many recent discoveries are featured in this edition, illustrating how science is more than a growing body of knowledge; it is an arena in which humans actively and systematically reach out to learn more about our place in the universe.

What's New to This Edition

Conceptual Physical Science, Sixth Edition, retains the pedagogical features developed in earlier editions. Text content is presented in a reader-friendly **narrative** in which the concepts of science are explained in a story-telling fashion with an emphasis on how these concepts relate to the student's everyday world, which is why students find this book so readable. This material has been updated to reflect recent developments, which are most notable in the Earth science and astronomy chapters. Because it is important that the student read the textbook slowly for comprehension, we include the ever-important **CHECKPOINTS** that encourage the student to stop reading periodically to reflect on what they think they have just learned. And, of course, the narrative is tightly integrated with an **art program** featuring photos and illustrations carefully developed over many years based upon the feedback of instructors and students alike.

Perhaps the most significant upgrade is the inclusion of **video tutorials** including **screencasts** created by the authors. For the printed book, students access these by scanning the QR code within the textbook margin using a portable electronic device, such as a smart phone. For the eBook, the student merely clicks on the video icon. If you are looking to "flip" your classroom, please note that the full library of author-created video lessons is available for free at the authors' personal website, ConceptualAcademy.com. We feel that these video lessons are our most recent and important contribution to making physical science correct and understandable. Yet another tool for helping your students come to class prepared, these video lessons nicely complement the chapter material helping to give the students the context they need to read the textbook with greater understanding.

Learning objectives are now placed at the start of each chapter. An Explain This question is still beneath each section head—a question the student should only be able to answer after having read the chapter section. Many chapters include updated **boxed essays** where related but optional topics are explored in more detail. Perhaps most important of these are the Figuring Physical Science boxes, which walk the student through a mathematical analysis of the concepts presented in the narrative. In the margins are updated FYI side notes highlighting applications of the concepts, and Insights that are brief and insightful comments identified by an LED light blub.

Significant updates to the content of this edition are as follows: fuel-cell technology coupled with photovoltaic panels in Chapter 3; geothermal heating or cooling of homes in Chapter 8; trans-fats now discussed in Chapter 12; a new subsection on thorium nuclear reactors in Chapter 13; the concept of enthalpy introduced in Chapter 17; updates on global climate change and ocean acidification in Chapters 18 and 24; a major revision of atmospheric moisture in Section 25.1; a new presentation of nebula and discussions of the internal and external structure of the Sun and deeper detail on the non-planetary bodies such as the asteroids, trojans, greeks, hildas, centaurs, and KBO's, with updated images and discussions of comet 67P, Vesta, Ceres, and the Pluto system in Chapter 27; updates on cosmology and the latest on dark matter and dark energy in Chapter 28; and most notably, a new chapter section on Einstein's special theory of relativity that now follows the general relativity section in Chapter 28.

Another important upgrade is further development of the end-of-chapter material, with some 150 new questions added. Existing questions have been reviewed for accuracy and clarity (thank you Bruce Novak!). **Exercises** are now segregated by chapter sections, which should facilitate homework assignments.

As with the previous edition, the end-of-chapter material is organized around Bloom's taxonomy of learning as follows:

Summary of Terms (Knowledge)

The definitions have been edited to match, word-for-word, the definitions given within the chapter. These key terms are now listed alphabetically so that they appear as a mini-glossary for the chapter.

Reading Check Questions (Comprehension)

These questions frame the important ideas of each section in the chapter. They are meant solely for a review of reading comprehension, not to challenge student intellect. They are simple questions and all answers are easily looked up in the chapter.

Activities (Hands-On Application)

The *Activities* is a set of easy-to-perform hands-on activities designed to help students experience the physical science concepts for themselves on their own or with others.

Plug and Chug (Formula Familiarization)

One-step insertion of quantities into provided mathematical formulas allows the student to perform quick and non-intimidating calculations.

Think and Solve (Mathematical Application)

Think and Solve questions blend simple mathematics with concepts. They allow students to apply the problem-solving techniques featured in the Figuring Physical Science boxes that appear in many chapters.

Think and Rank (Analysis)

Think and Rank questions ask students to analyze trends based upon their understanding of concepts. Critical thinking is called for.

Exercises (Synthesis)

Exercises, by a notch or two, are the more challenging questions of each chapter. Many require critical thinking while others are designed to prompt the application of science to everyday situations. All students wanting to perform well on exams should be directed to the *Exercises* because they directly assess student understanding.

Discussion Questions (Evaluation)

Discussion Questions provide students the opportunity to apply the concepts of physical science to real-life situations, such as whether a cup of hot coffee served to you in a restaurant cools faster when cream is added promptly or a few minutes later. Other Discussion Questions allow students to present their educated opinions on a number of science-related hot topics, such as the appearance of pharmaceuticals in drinking water or whether it would be a good idea to enhance the ocean's ability to absorb carbon dioxide by add-ing powdered iron.

Readiness Assurance Test (RAT)

Each chapter review concludes with a set of 10 multiple choice questions for self-assessment. Students are advised to study further if they score less than 7 correct answers.

Students can find the solutions to the odd-numbered end-of-chapter questions in the back of the textbook.

Acknowledgments

We are enormously grateful to outstanding teachers Bruce Novak and Dean Baird to whom this edition is dedicated. Their love of students is reflected in their contributions of new and insightful information, contributing to this being the best edition of *Conceptual Physical Science* ever.

We remain grateful to Ken Ford for extensive feedback, from previous editions to the present. While tweaking parts of this edition, Ken also wrote his own book, *Building the H-Bomb, a Personal History*. Congratulations Ken! We are also grateful to Lillian Lee Hewitt for extensive editorial help in both the book and its ancillaries. That gratefulness includes John's wife Tracy Suchocki for assisting with the chemistry ancillaries, particularly with the new chemistry and astronomy *Practice Pages*. We thank Fe Davis, Angela Hernandez, and Bob Hulsman for their photos. We are grateful to Scotty Graham for physics suggestions, to Evan Jones and John Sperry for their contributions to *Think and Solve* problems, and to Brad Butler for problem suggestions.

For physics input to previous editions we remain grateful to Tsing Bardin, Howie Brand, George Curtis, Alan Davis, Paul Doherty, Marshall Ellenstein, John Hubisz, Marilyn Hromatko, Dan Johnson, Tenny Lim, Iain McInnes, Fred Myers, Mona Nasser, Diane Reindeau, Chuck Stone, Larry Weinstein, Jeff Wetherhold, David Williamson, Phil Wolf, P. O. Zetterberg, and Dean Zollman.

For development of chemistry chapters, thanks go to the following professors for their reviews: Adedoyin Adeyiga, Linda Bates, Dave Benson, John Bonte, Emily Borda, Charles Carraher, Natashe Cleveland, Robin DeRoo, Sara Devo, Andy Frazer, Kenneth French, Marcia Gillette, Chu-Ngi Ho, Frank Lambert, Chris Maloney, Christopher Merli, Barbara Pappas, Michelle Paustenbaugh, Daniel Predecki, Britt Price, Jeremy Ramsey, Rejendra Ravel, Kathryn Rust, William Scott, Anne Marie Sokol, Jason Vohs, Bob Widing, and David Yates.

For Earth science feedback and contributions we remain thankful to Mary Brown, Ann Bykerk-Kauffman, Oswaldo Garcia, Newell Garfield, Karen Grove, Trayle Kulshan, Jan Null, Katryn Weiss, Lisa White, and Mike Young. Special appreciation goes to Bob Abrams for his assistance with the Earth science material; and to Megan and Emily Abrams for their inspiration, their curiosity, and their new found appreciation of hiking and rock collecting.

For the astronomy chapters we extend our gratitude once again to Bruce Novak who painstakingly reviewed every sentence for both accuracy and clarity. He was assisted by astronomy professor Mark Petricone to whom we also extend our thanks. We are grateful to Megan Donahue, Nicholas Schneider, and Mark Voit for permission to use many of the graphics that appear in their textbook *The Cosmic Perspective*. A special thanks to Jeffery Bennett and Chuck Stone for their review of the astronomy videos. Also, for reviews of the astronomy chapters we remain grateful to the late Richard Crowe, Bjorn Davidson, Stacy McGaugh, Michelle Mizuno-Wiedner, John O'Meara, Neil deGrasse Tyson, Joe Wesney, Lynda Williams, and Erick Zackrisson.

Special thanks to the dedicated talented staff at Pearson particularly Jeanne Zalesky, Martha Steele, Mary Ripley, Kate Brayton, and Mark Ong. To Rose Kernan and the production team at Cenveo we extend a heartfelt thanks for such a beautiful job in composing the pages of this latest edition. We are especially thankful to our long time publisher and friend Jim Smith for his generous support that has made our work possible.

Instructional Package

Conceptual Physical Science, sixth edition, provides an integrated teaching and learning package of support material for students and instructors.

Name of Supplement	Available in Print	Available Online	Instructor or Student Supplement	Description
MasteringPhysics® with Pearson eText (ISBN 013407999X)		✓	Supplement for Instructors and Students	This product features all of the resources of MasteringPhysics in addition to the NEW! Pearson eText 2.0. Now available on smart- phones and tablets, Pearson eText 2.0 comprises the full text, including videos and other rich me- dia. Students can configure reading settings, in- cluding resizeable type and night-reading mode, take notes, and highlight, bookmark, and search the text.
Instructor Manual for Conceptual Physical Science (ISBN 0134092007)		5	Supplement for Instructors	This manual allows for a variety of course designs, with many lecture ideas and topics not treated in the textbook, teaching tips for "flip- ping" your class, and solutions to all the end-of- chapter material.
Conceptual Physical Science Practice Book (ISBN 0134091396)	✓		Supplement for Students	Expanded for this sixth edition, this resource provides engaging worksheets that guide students in developing concepts, with user-friendly analo- gies and intriguing situations. A great resource for classroom team-based learning.
TestGen Test Bank for Conceptual Physical Science (ISBN 0134091426)		✓	Supplement for Instructors	Written solely by the authors, the <i>Test Bank</i> has more than 2500 multiple-choice questions and short-answer and essay questions categorized by difficulty level. You can edit and add questions, and create multiple test versions. Questions have been vetted for clarity and to ensure they match the text's content.
Laboratory Manual for Conceptual Physical Science (ISBN 0134091418)	1		Supplement for Students	Written by Dean Baird with input from the authors, this manual provides a range of activities similar to the activities in the textbook and interesting laboratory experiments that guide students to experience and quantify phenomena Answers to the lab manual questions are in the <i>Instructor Manual</i> .
Instructor's Resource DVD for <i>Conceptual</i> <i>Physical Science</i> (ISBN 0134091434)	1	5	Supplement for Instructors	This cross-platform DVD includes all images from the book in JPEG format; interactive figures [™] and videos; author-written PowerPoint [®] lecture outlines and clicker questions; and Hewitt's acclaimed Next-Time Questions in PDF format.
Problem Solving for Conceptual Physics (ISBN 032166258X)	1		Supplement for Students	This text provides problem-solving techniques in algebraic physics.

This page intentionally left blank

PROLOGUE

The Nature of Science

A Brief History of Advances in Science

LEARNING OBJECTIVE: Acknowledge contributions to science by various cultures.

Mathematics and Conceptual Physical Science LEARNING OBJECTIVE: Recount how mathematics contributes to success in science.

Scientific Methods

LEARNING OBJECTIVE: List the steps in one scientific method, and cite other methods that advance science.

The Scientific Attitude

LEARNING OBJECTIVE: Describe how honest inquiry affects the formulation of facts, laws, and theories.

Science Has Limitations

LEARNING OBJECTIVE: Distinguish between natural and supernatural phenomena.

Science, Art, and Religion

LEARNING OBJECTIVE: Discuss some similarities and differences among science, art, and religion.

Technology—The Practical Use of Science LEARNING OBJECTIVE: Relate technology to the furthering of science, and vice versa.

The Physical Sciences: Physics, Chemistry, Earth Science, and Astronomy

LEARNING OBJECTIVE: Compare the fields of physics, chemistry, Earth science, and astronomy.

In Perspective

LEARNING OBJECTIVE: Relate learning science to an increased appreciation of nature.

ITTLE GRACIE is intrigued to learn that Earth's atmosphere acts as a lens that bends the red light of sunsets and sunrises all around Earth onto the Moon during a lunar eclipse, making it reddish instead of dark. Gracie loves science, which after all is the product of human curiosity about how the world works—an organized body of knowledge that describes the order within nature and the causes of that order. Science is an ongoing human activity that represents the collective efforts, findings, and wisdom of the human race, an activity that is dedicated to gathering knowledge about the world and to organizing and condensing it into testable laws and theories. In our study of science, we are learning about the rules of nature-how one thing is connected to another and how patterns underlie all we see in our surroundings. Any activity, whether a sports game, a computer game, or the game of life, is meaningful only when we understand its rules. Learning about nature's rules is Relevant with a capital R!

We will see in this text that science is much more than a body of knowledge. Science is a way of thinking.

A Brief History of Advances in Science

EXPLAIN THIS How did the advent of the printing press affect the growth of science?

Science made great headway in Greece in the 4th and 3rd centuries BC and spread throughout the Mediterranean world. Scientific advance came to a near halt in Europe when the Roman Empire fell in the 5th century AD. Barbarian hordes destroyed almost everything in their paths as they overran Europe. Reason gave way to religion, which ushered in what came to be known as the Dark Ages. During this time, the Chinese and Polynesians were charting the stars and the planets. Before the advent of Islam, Arab nations developed mathematics and learned about the production of glass, paper, metals, and various chemicals. Greek science was reintroduced to Europe by Islamic influences that penetrated into Spain during the 10th, 11th, and 12th centuries. Universities emerged in Europe in the 13th century, and the introduction of gunpowder changed the social and political structure of Europe in the 14th century. The 15th century saw art and science beautifully blended by Leonardo da Vinci. Scientific thought was furthered in the 16th century with the advent of the printing press.

The 16th-century Polish astronomer Nicolaus Copernicus caused great controversy when he published a book proposing that the Sun is stationary and that Earth revolves around the Sun. These ideas conflicted with the popular view that Earth was the center of the universe. They also conflicted with Church teachings and were banned for 200 years. The Italian physicist Galileo Galilei was arrested for popularizing the Copernican theory and for his other contributions to scientific thought. Yet a century later, those who advocated Copernican ideas were accepted.

These cycles occur age after age. In the early 1800s, geologists met with violent condemnation because they differed with the account of creation in the book of Genesis. Later in the same century, geology was accepted, but theories of evolution were condemned and the teaching of them was forbidden. Every age has its groups of intellectual rebels who are scoffed at, condemned, and sometimes even persecuted at the time but who later seem beneficial and often essential to the elevation of human conditions. "At every crossway on the road that leads to the future, each progressive spirit is opposed by a thousand men appointed to guard the past."*

Mathematics and Conceptual Physical Science

EXPLAIN THIS What is meant by "Equations are guides to thinking"?

Science and human conditions advanced dramatically after science and mathematics became integrated some four centuries ago. When the ideas of science are expressed in mathematical terms, they are unambiguous. The equations of science provide compact expressions of relationships between concepts. They don't have the multiple meanings that so often confuse the discussion of ideas expressed in common language. When findings in nature are expressed mathematically, they are easier to verify or to disprove by experiment. The mathematical structure of physics is evident in the many equations you will encounter throughout this text. The equations are guides to thinking that show

* From Count Maurice Maeterlinck's "Our Social Duty."

Science is a way of knowing about the world and making sense of it.

In pre-Copernican times the Sun and Moon were viewed as planets. Their planetary status was removed when Copernicus substituted the Sun for Earth's central position. Only then was Earth regarded as a planet among others. More than 200 years later, in 1781, telescope observers added Uranus to the list of planets. Neptune was added in 1846. Pluto was added in 1930—and removed in 2006.

Scientists have a deep-seated need to know Why? and What if? Mathematics is foremost in their tool kits for tackling these questions. the connections between concepts in nature. The methods of mathematics and experimentation led to enormous success in science.*

Scientific Methods

EXPLAIN THIS What else besides the common scientific method advances science?

here is no *one* scientific method. But there are common features in the way scientists do their work. Although no cookbook description of the **scientific method** is really adequate, some or all of the following steps are likely to be found in the way most scientists carry out their work.

- 1. *Observe*. Closely observe the physical world around you. Recognize a question or a puzzle—such as an unexplained observation.
- 2. *Question.* Make an educated guess—a hypothesis—to answer the question.
- 3. *Predict.* Predict consequences that can be observed if the hypothesis is correct. The consequences should be *absent* if the hypothesis is not correct.
- 4. *Test predictions.* Do experiments to see whether the consequences you predicted are present.
- 5. *Draw a conclusion.* Formulate the simplest general rule that organizes the hypothesis, predicted effects, and experimental findings.

Although these steps are appealing, much progress in science has come from trial and error, experimentation without hypotheses, or just plain accidental discovery by a well-prepared mind. The success of science rests more on an attitude common to scientists than on a particular method. This attitude is one of inquiry, experimentation, and humility—that is, a willingness to admit error.

The Scientific Attitude

EXPLAIN THIS Why does falsifying information discredit a scientist but not a lawyer?

t is common to think of a fact as something that is unchanging and absolute. But in science, a **fact** is generally a close agreement by competent observers who make a series of observations about the same phenomenon. For example, although it was once a fact that the universe is unchanging and permanent, today it is a fact that the universe is expanding and evolving. A scientific hypothesis, on the other hand, is an educated guess that is only presumed to be factual until supported by experiment. When a hypothesis has been tested over and over again and has not been contradicted, it may become known as a **law** or *principle*.

If a scientist finds evidence that contradicts a hypothesis, law, or principle, the scientific spirit requires that the hypothesis be changed or abandoned (unless the contradicting evidence, upon testing, turns out to be wrong—which sometimes happens). For example, the greatly respected Greek philosopher Aristotle (384–322 BC) claimed that an object falls at a speed proportional to its

* We distinguish between the mathematical structure of science and the practice of mathematical problem solving—the focus of most nonconceptual courses. Note that there are far fewer mathematical problems than exercises at the ends of the chapters in this text. The focus is on comprehension before computation.

Science is a way to teach how something gets to be known, what is not known, to what extent things are known (for nothing is known absolutely), how to handle doubt and uncertainty, what the rules of evidence are, how to think about things so that judgments can be made, and how to distinguish truth from fraud and from show.

—Richard Feynman

Experiment, not philosophical discussion, decides what is correct in science.

Before a theory is accepted, it must be tested by experiment and make one or more new predictions—different from those made by previous theories. weight. This idea was held to be true for nearly 2000 years because of Aristotle's compelling authority. Galileo allegedly showed the falseness of Aristotle's claim with one experiment—demonstrating that heavy and light objects dropped from the Leaning Tower of Pisa fell at nearly equal speeds. In the scientific spirit, a single verifiable experiment to the contrary outweighs any authority, regardless of reputation or the number of followers or advocates. In modern science, argument by appeal to authority has little value.*

Scientists must accept their experimental findings even when they would like them to be different. They must strive to distinguish between what they see and what they wish to see, for scientists, like most people, have a vast capacity for fooling themselves.** People have always tended to adopt general rules, beliefs, creeds, ideas, and hypotheses without thoroughly questioning their validity and to retain them long after they have been shown to be meaningless, false, or at least questionable. The most widespread assumptions are often the least questioned. Most often, when an idea is adopted, particular attention is given to cases that seem to support it, while cases that seem to refute it are distorted, belittled, or ignored.

Scientists use the word *theory* in a way that differs from its usage in everyday speech. In everyday speech, a theory is no different from a hypothesis—a supposition that has not been verified. A scientific **theory**, on the other hand, is a synthesis of a large body of information that encompasses well-tested and verified hypotheses about certain aspects of the natural world. Physicists, for example, speak of the quark theory of the atomic nucleus, chemists speak of the theory.

The theories of science are not fixed; rather, they undergo change. Scientific theories evolve as they go through stages of redefinition and refinement. During the past hundred years, for example, the theory of the atom has been repeatedly refined as new evidence on atomic behavior has been gathered. Similarly, chemists have refined their view of the way molecules bond together, and biologists have refined the cell theory. The refinement of theories is a strength of science, not a weakness. Many people feel that it is a sign of weakness to change their minds. Competent scientists must be experts at changing their minds. They change their minds, however, only when confronted with solid experimental evidence or when a conceptually simpler hypothesis forces them to a new point of view. More important than defending beliefs is improving them. Better hypotheses are made by those who are honest in the face of experimental evidence.

Away from their profession, scientists are inherently no more honest or ethical than most other people. But in their profession, they work in an arena that places a high premium on honesty. The cardinal rule in science is that all hypotheses must be testable—they must be susceptible, at least in principle, to being shown to be *wrong*. Speculations that cannot be tested are regarded as "unscientific." This has the long-run effect of compelling honesty—findings widely publicized among fellow scientists are generally subjected to further testing. Sooner or later, mistakes (and deception) are found out; wishful thinking is exposed. A discredited scientist does not get a second chance in the community of scientists. The penalty for fraud is professional excommunication. Honesty, so important to the progress of science, thus becomes a matter of self-interest to scientists. There is relatively little bluffing in a game in which all bets are called. In fields of study where right and wrong are not so easily established, the pressure to be honest is considerably less.

* But appeal to *beauty* has value in science. More than one experimental result in modern times has contradicted an appealing theory that, upon further investigation, proved to be wrong. This has bolstered scientists' faith that the ultimately correct description of nature involves conciseness of expression and economy of concepts—a combination that deserves to be called beautiful. ** In your education it is not enough to be aware that other people may try to fool you; it is more important to be aware of your own tendency to fool yourself. In science, it is more important to have a means of proving an idea wrong than to have a means of proving it right. This is a major factor that distinguishes science from nonscience. At first this may seem strange, for when we wonder about most things, we concern ourselves with ways of finding out whether they are true. Scientific hypotheses are different. In fact, if you want to distinguish whether a hypothesis is scientific, look to see whether there is a test for proving it wrong. If there is no test for its possible wrongness, then the hypothesis is not scientific. Albert Einstein put it well when he stated, "No number of experiments can prove me right; a single experiment can prove me wrong."

Consider the biologist Charles Darwin's hypothesis that life forms evolve from simpler to more complex forms. This could be proved wrong if paleontologists were to find that more complex forms of life appeared before their simpler counterparts. Einstein hypothesized that light is bent by gravity. This might be proved wrong if starlight that grazed the Sun and could be seen during a solar eclipse were undeflected from its normal path. As it turns out, less complex life forms are found to precede their more complex counterparts and starlight is found to bend as it passes close to the Sun, observations that support the claims. If and when a hypothesis or scientific claim is confirmed, it is regarded as useful and as a stepping-stone to additional knowledge.

Consider the hypothesis "The alignment of planets in the sky determines the best time for making decisions." Many people believe it, but this hypothesis is not scientific. It cannot be proved wrong, nor can it be proved right. It is *speculation*. Likewise, the hypothesis "Intelligent life exists on other planets somewhere in the universe" is not scientific. Although it can be proved correct by the verification of a single instance of intelligent life existing elsewhere in the universe, there is no way to prove it wrong if no intelligent life is ever found. If we searched the far reaches of the universe for eons and found no life, even that would not prove that it doesn't exist "around the next corner." A hypothesis that is capable of being prove right but not capable of being proved wrong is not a scientific hypothesis. Many such statements are quite reasonable and useful, but they lie outside the domain of science.

The essence of science is expressed in two questions: How would we know? What evidence would prove this idea wrong? Assertions without evidence are unscientific and can be dismissed without evidence.

We each need a *knowledge filter* to tell the difference between what is true and what only pretends to be true. The best knowledge filter ever invented for explaining the physical world is science.

CHECKPOINT

Which of these statements is a scientific hypothesis?

- (a) Atoms are the smallest particles of matter that exist.
- (b) Space is permeated with an essence that is undetectable.
- (c) Albert Einstein was the greatest physicist of the 20th century.

Was this your answer?

Only statement (a) is scientific, because there is a test for falseness. The statement not only is *capable* of being proved wrong, but *has* been proved wrong. Statement (b) has no test for possible wrongness and is therefore unscientific. Likewise for any principle or concept for which there is no means, procedure, or test whereby it can be shown to be wrong (if it is wrong). Some pseudoscientists and other pretenders to knowledge will not even consider a test for the possible wrongness of their statements. Statement (c) is an assertion that has no test for possible wrongness. If Einstein was not the greatest physicist, how could we know? Note that because the name Einstein is generally held in high esteem, it is a favorite of pseudoscientists. So we should not be surprised that the name of Einstein, like that of Jesus or of any other highly respected person, is cited often by charlatans who wish to accrue respect to themselves and their points of view. In all fields, it is prudent to be skeptical of those who wish to credit themselves by calling upon the authority of others.

Science Has Limitations

EXPLAIN THIS How do the domains of science and the supernatural differ?

Science deals only with hypotheses that are testable. Its domain is therefore restricted to the observable natural world. Although scientific methods can be used to debunk various paranormal claims, they have no way of accounting for testimonies involving the supernatural. The term *supernatural* literally means "above nature." Science works within nature, not above it. Likewise, science is unable to answer philosophical questions, such as "What is the purpose of life?" or religious questions, such as "What is the nature of the human spirit?" Even though these questions are valid and may have great importance to us, they rely on subjective personal experience and do not lead to testable hypotheses. They lie outside the realm of science.

SCIENCE AND SOCIETY

Pseudoscience

For a claim to qualify as scientific, it must meet certain standards. For example, the claim must be reproducible by others who have no stake in whether the claim is true or false. The data and subsequent interpretations are open to scrutiny in a social environment where it's okay to have made an honest mistake, but not okay to have been dishonest or deceiving. Claims that are presented as scientific but do not meet these standards are what we call pseudoscience, which literally means "fake science." In the realm of pseudoscience, skepticism and tests for possible wrongness are downplayed or flatly ignored.

Examples of pseudoscience abound. Astrology is an ancient belief system that supposes that a person's future is determined by the positions and movements of planets and other celestial bodies. Astrology mimics science in that astrological predictions are based on careful astronomical observations. Yet astrology is not a science because there is no validity to the claim that the positions of celestial objects influence the events of a person's life. After all, the gravitational force exerted by celestial bodies on a person is smaller than the gravitational force exerted by objects making up the earthly

environment: trees, chairs, other people, bars of soap, and so on. Further, the predictions of astrology are not borne out; there just is no evidence that astrology works.

For more examples of pseudoscience, look to television or the Internet. You can find advertisements for a plethora of pseudoscientific products. Watch out for remedies to ailments such as baldness, obesity, and cancer; for air-purifying mechanisms; and for "germ-fighting" cleaning products in particular. Although many such products operate on solid science, others are pure pseudoscience. Buyer beware!

Humans are very good at denial, which may explain why pseudoscience is such a thriving enterprise. Many pseudoscientists do not recognize their efforts as pseudoscience. A practitioner of "absent healing," for example, may truly believe in her ability to cure people she will never meet except through e-mail and credit card exchanges.

She may even find anecdotal evidence to support her contentions. The *placebo effect,* discussed in Section 8.2, can mask the ineffectiveness of various healing modalities. In terms of the human body, what people believe *will* happen often *can* happen because of the physical connection between the mind and body. That said, consider the enormous downside of pseudoscientific practices. Today more than 20,000 astrologers are practicing in the United States. Do people listen to these astrologers just for the fun of it? Or do they base important decisions on astrology? You might lose money by listening to pseudoscientific entrepreneurs; worse, you could become ill. Delusional thinking, in general, carries risk.

Meanwhile, the results of science literacy tests given to the general public show that most Americans lack an elementary understanding of basic concepts of science. Some 63% of American adults are unaware that the mass extinction of the dinosaurs occurred long before the first human evolved; 75% do not know that antibiotics kill bacteria but not viruses; 57% do not know that electrons are smaller than atoms. What we find is a rift-a growing divide-between those who have a realistic sense of the capabilities of science and those who do not understand the nature of science and its core concepts, or, worse, feel that scientific knowledge is too complex for them to understand. Science is a powerful method for understanding the physical world, and it is a whole lot more reliable than pseudoscience as a means for bettering the human condition.

Science, Art, and Religion

EXPLAIN THIS Why is the statement "Never question what this book says" outside the domain of science?

The search for a deeper understanding of the world around us has taken different forms, including science, art, and religion. Science is a system by which we discover and record physical phenomena and think about possible explanations for such phenomena. The arts are concerned with personal interpretation and creative expression. Religion addresses the source, purpose, and meaning of it all. Simply put, science asks *how*, art asks *who*, and religion asks *why*.

Science and the arts have certain things in common. In the art of literature, we find out about what is possible in human experience. We can learn about emotions such as rage and love, even if we haven't yet experienced them. The arts describe these experiences and suggest what may be possible for us. Similarly, a knowledge of science tells us what is possible in nature. Scientific knowledge helps us predict possibilities in nature even before we experience them. It provides us with a way of connecting things, of seeing relationships between and among them, and of making sense of the great variety of natural events around us. While art broadens our understanding of ourselves, science broadens our understanding of our environment.

Science and religion have similarities also. For example, both are motivated by curiosity for the natural. Both have great impact on society. Science, for example, leads to useful technological innovations, and religion provides a foothold for many social services. Science and religion, however, are basically different. Science is concerned with understanding the physical universe, while many religions are concerned with faith in, and the worship of, a supreme being and with the creation of human community—not the practice of science. While scientific truth is a matter of public scrutiny, religion is a deeply personal matter. In these respects, science and religion are as different as apples and oranges and do not contradict each other. Science, art, and religion can work very well together, which is why we should never feel forced into choosing one over the other.

When we study the nature of light later in this book, we treat light first as a wave and then as a particle. At first, waves and particles may appear contradictory. You might believe that light can be only one or the other, and that you must choose between them. What scientists have discovered, however, is that light waves and light particles *complement* each other, and that when these two ideas are taken together, they provide a deeper understanding of light. In a similar way, it is mainly people who are either uninformed or misinformed about the deeper natures of both science and religion who feel that they must choose between believing in religion and believing in science. Unless one has a shallow understanding of either or both, there is no contradiction between being religious in one's belief system and being scientific in one's understanding of the natural world.*

Many people are troubled about not knowing the answers to religious and philosophical questions. Some avoid uncertainty by uncritically accepting almost any comforting answer. An important message in science, however, is that uncertainty is acceptable. For example, if you study quantum physics you'll learn that it is not possible to know with certainty both the momentum and the position of an electron in an atom. The more you know about one, the less

* Of course, this does not apply to certain religious extremists who steadfastly assert that one cannot embrace both science and their brand of religion. Art is about cosmic beauty. Science is about cosmic order. Religion is about cosmic purpose.

A truly educated person is knowledgeable in both the arts and the sciences.

The belief that there is only one truth and that oneself is in possession of it seems to me the deepest root of all the evil that is in the world.

—Max Born

you can know about the other. Uncertainty is a part of the scientific process. It's okay not to know the answers to fundamental questions. Why are apples gravitationally attracted to Earth? Why do electrons repel one another? Why do magnets interact with other magnets? Why does energy have mass? At the deepest level, scientists don't know the answers to these questions—at least not yet. We know a lot about where we are, but nothing really about *why* we are. It's okay not to know the answers to such religious questions. Given a choice between a closed mind with comforting answers and an open and exploring mind without answers, most scientists choose the latter. Scientists in general are comfortable with not knowing.

CHECKPOINT

Which of the following activities involves the utmost human expression of passion, talent, and intelligence: (a) painting and sculpture, (b) literature, (c) music, (d) religion, (e) science?

Was this your answer?

All of them. In this text, we focus on science, which is an enchanting human activity shared by a wide variety of people. With present-day tools and knowhow, scientists are reaching further and finding out more about themselves and their environment than people in the past were ever able to do. The more you know about science, the more passionate you feel toward your surroundings. There is science in everything you see, hear, smell, taste, and touch!

Technology—The Practical Use of Science

EXPLAIN THIS Who thinks of an idea, who develops it, and who uses it?

Science and technology are also different from each other. Science is concerned with gathering knowledge and organizing it. Technology lets humans use that knowledge for practical purposes, and it provides the instruments scientists need to conduct their investigations.

Technology is a double-edged sword. It can be both helpful and harmful. We have the technology, for example, to extract fossil fuels from the ground and then burn the fossil fuels to produce energy. Energy production from fossil fuels has benefited society in countless ways. On the flip side, the burning of fossil fuels damages the environment. It is tempting to blame technology itself for such problems as pollution, resource depletion, and even overpopulation. These problems, however, are not the fault of technology any more than a stabbing is the fault of the knife. It is humans who use the technology, and humans who are responsible for how it is used.

Remarkably, we already possess the technology to solve many environmental problems. The 21st century will probably see a switch from fossil fuels to more sustainable energy sources. We recycle waste products in new and better ways. In some parts of the world, progress is being made toward limiting human population growth, a serious threat that worsens almost every problem faced by humans today. Difficulty in solving today's problems results more from social inertia than from failing technology. Technology is our tool. What we do with this tool is up to us. The promise of technology is a cleaner and healthier world. Wise applications of technology *can* improve conditions on planet Earth.

RISK ASSESSMENT

The numerous benefits of technology are paired with risks. X-rays, for example, continue to be used for medical diagnosis despite their potential for causing cancer. But when the risks of a technology are perceived to outweigh its benefits, it should be used very sparingly or not at all.

Risk can vary for different groups. Aspirin is useful for adults, but for young children it can cause a potentially lethal condition known as Reye's syndrome. Dumping raw sewage into the local river may pose little risk for a town located upstream, but for towns downstream the untreated sewage is a health hazard. Similarly, storing radioactive wastes underground may pose little risk for us today, but for future generations the risks of such storage are greater if there is leakage into groundwater. Technologies involving different risks for different people, as well as differing benefits, raise questions that are often hotly debated. Which medications should be sold to the general public over the counter and how should they be labeled? Should food be irradiated in order to put an end to food poisoning, which kills more than 5000 Americans each year? The risks to all members of society must be considered when public policies are decided.

The risks of technology are not always immediately apparent. No one fully realized the dangers of combustion products when petroleum was selected as the fuel of choice for automobiles early in the last century. From the hindsight of 20/20 vision, alcohols from biomass would have been a superior choice environmentally, but they were banned by the prohibition movements of the day.

Because we are now more aware of the environmental costs of fossil-fuel combustion, biomass fuels are making a slow comeback. An awareness of both the short-term risks and the longterm risks of a technology is crucial.

People seem to have a hard time accepting the impossibility of zero risk. Airplanes cannot be made perfectly safe. Processed foods cannot be rendered completely free of toxicity, for all foods are toxic to some degree. You cannot go to the beach without risking skin cancer, no matter how much sunscreen you apply. You cannot avoid radioactivity, for it's in the air you breathe and the foods you eat, and it has been that way since before humans first walked on Earth. Even the cleanest rain contains radioactive carbon-14, as do our bodies. Between each heartbeat in each human body, there have always been about 10,000 naturally occurring radioactive decays. You might hide yourself in the hills, eat the most natural foods, practice obsessive hygiene, and still die from cancer caused by the radioactivity emanating from your own body. The probability of eventual death is 100%. Nobody is exempt.

Science helps determine the most probable. As the tools of science improve, the assessment of the most probable gets closer to being on target. Acceptance of risk, on the other hand, is a societal issue. Making zero risk a societal goal is not only impractical but also selfish. Any society trying to implement a policy of zero risk will consume its present and future economic resources. Isn't it more noble to accept nonzero risk and minimize risk as much as possible within the limits of practicality? A society that accepts no risks receives no benefits.

The Physical Sciences: Physics, Chemistry, Earth Science, and Astronomy

EXPLAIN THIS Why is physics more fundamental than the other sciences?

Science is the present-day equivalent of what used to be called *natural philosophy*. Natural philosophy was the study of unanswered questions about nature. As the answers were found, they became part of what is now called science. The study of science today branches into the study of living things and nonliving things: the life sciences and the physical sciences. The life sciences branch into such areas as molecular biology, microbiology, and ecology. The *physical sciences* branch into such areas as physics, chemistry, the Earth sciences, and astronomy.

A few words of explanation about each of the major divisions of science: Physics is the study of such concepts as motion, force, energy, matter, heat, sound, light, and the components of atoms. Chemistry builds on physics by